
Microsoft Excel:
Recording, Using, and Editing Macros

Terminology: VBA, SUBROUTINE,
Objects, Methods, and Properties

Macro Fundamentals: Record
and Use

Writing a Macro: Objects,
Methods, and Properties

Advanced Ideas: Variables,
Loops, and Decisions

02

03

14

18

neil@knacktraining.com	 http://youtube.com/neilmalek

http://facebook.com/knacktraining	 http://instagram.com/neilmalek

http://twitter.com/neilmalek		 http://linkedin.com/in/neilmalek

2

www.knacktraining.com

Terminology

VBA:	 The implementation of Microsoft’s programming language that is used in
Word, Excel, and the rest of the Office Suite. The language is called Visual
Basic, and the full acronym is Visual Basic for Applications.

Subroutine:	 Listed as a sub in the language, a subroutine is a chunk of code
that can be executed. This is the container for your macro.

Module:	 The code container for subroutines. When looking at the VBA
window, it is the page that opens to be typed into.

Keywords:	 The words that are protected in the Visual Basic language. These
terms are used by the language to accomplish standard tasks,
and should not be used for user-created elements.

Comments:	 The plain-English portions of your macro. Since you’ll be revisiting your
macro after long periods away, you should create comments to read what
you were thinking when you originally created the macro.

Objects:	 In a programming language, in order to affect a real element (like a
workbook, worksheet, or cell), that language must have an entry that
reflects that element. An object in a programming language is effectively
the noun.

Properties:	 In the language, these objects have attributes (the color of a cell, for
example), which are called properties. If the object is the noun, the property
is the adjective.

Methods:	 In the language, these objects have actions they can take (copy, for
example), which are called methods. If the object is the noun, the method is
the verb.

Comment
Subroutine

Method
PropertyObject

3

www.knacktraining.com

Understanding Macros

Programming for the Layperson
The entirety of the OFfice suite - Word, Excel, etc. - was written in the programming language Visual Basic. As
described on the previous page, the various tools that are given to us as users are composed of objects, and
code that accesses those objects’ methods and properties. For example, if you select cell C3 and press the
button to make the contents bold, the command Excel executes would look like this:

Range(“C3”).Select
Selection.Font.Bold

A macro, then, is a set of these commands that we piece together for our own use. The commands can be
as straightforward as the above example (where a single command is executed on a single cell), or they can
become vastly more complicated (where the macro decides whether to implement a series of commands on
various cells based on conditions you set).

In this document, we will be recording a new macro by telling Excel to watch our sequence of button presses
and typing. Afterward, we’ll be exploring the code that this recording creates for us, and modifying it. Finally,
we’ll discuss how to write a macro without any recording involved.

Recording vs. Writing Macros
Remember that Excel is not an intelligent program; if it records the steps you perform, it has no way of
understanding why you performed those steps, in that order, on those cells. For example, if you record a
macro that has you clicking in cell C3, later the macro will click into cell C3. This happens even if you selected
C3 because it was the first cell with data, and now the first cell with data is C4.

When we write our own macro, the coding language can include decisions and tests - things like look for the
last cell with data or continue until you reach a cell greater than 50,000. Recorded macros cannot include
these tests.

4

www.knacktraining.com

Record a Macro

Preparation
This cannot be stressed enough - the most important step for recording a macro is the preparation stage.
Once you press the button to begin recording, Excel is watching and recording every click and entry. Begin by
determining what should be included in your macro (navigation, selection, and other commands), and what
shouldn’t. Also, consider that you’ll want to understand your macro later - moving back-and-forth from one
area to another will mean that the recorded steps are difficult to follow. Organize your thoughts on paper,
then start the recording process.

The Developer Tab
In order to record and edit macros, you’ll need an additional tab available at the top of the screen - Developer.
If you don’t see it yet, click File > Options > Customize Ribbon. Select the checkbox for Developer.

5

www.knacktraining.com

Now your Ribbon should look like this:

Press Record
On the Developer Tab, in the Code Group, select Record Macro. A
new dialog box will appear. Into this dialog box:

Name the macro. It should be self-explanatory, and it cannot have
spaces in it. I like to use camel case (every first letter of a new word
is capitalized). I’ll name mine InsertNameAndDate.

A Shortcut key is not essential (you can use your
macro without a keyboard shortcut), and it’s essential
to remember that whatever shortcut you choose will
replace the existing shortcut tool. In this example,
understand that Ctrl + i is the shortcut for italics,
and you wouldn’t be able to use that shortcut in this
spreadsheet for italicizing.

The choices for Store macro in are This Workbook
(available only on this file), New Workbook (saved into
the template for blank spreadsheets), and Personal
Macro Workbook (a universal source for all files you
open on your computer). For our purposes, I’ll choose
This Workbook.

Finally, add any useful Description in plain English, so
future users of the macro (and you) can understand the
point of this code.

Click OK. The recording process will begin.

You’ll know that you’re actively recording, because the button
that used to say Record Macro is now a blue square that says Stop
Recording.

Record a Macro

6

www.knacktraining.com

Record a Macro

Perform Your Steps
For the purposes of this macro, we’ll focus on absolute reference steps, which means that if you click cell A1,
the macro will always go to A1. More on the other option soon.

Click in cell A1. Type Name:

Click in cell B1. Type <your name>

Click in cell A2. Type Date:

Click in cell B2. Type =TODAY()

Press [Enter].

At this point, we’ve done all we’re going to record.

Click Developer > Code Group > Stop Recording.

Inspect Your Recording
To see the macro you’ve created, click Developer > Macros. This
will open the Macro dialog box. Any macros you have available
will be listed on this dialog.

7

www.knacktraining.com

Using Macros

Use Your Recording
We’ll use this macro four times, through the four execution methods you might find useful. To do this, let’s
create four new, blank sheets. Click the [+] button in the tabbed section at the bottom of the screen four
times, to create these sheets.

Click Sheet2.

Run Macro
Click Developer Tab > Code Group > Macros. From the Macro dialog box, select your macro
(InsertNameAndDate), and choose [Run].

What will happen is that the content described in our previous exercise is inserted. Try to Undo the operation,
and you’ll notice that macros can’t be undone.

Keyboard Shortcut
In the previous exercise, we set Ctrl + i as the keyboard shortcut for this macro. Select a new, blank worksheet,
and use the shortcut you created. Again, this can’t be undone.

8

www.knacktraining.com

Quick Access Toolbar
So far, we’ve used a multiple-button-press procedure, and
a keyboard shortcut that needs to be remembered to be
leveraged. One of my preferred methods is to add a custom
button to the Quick Access Toolbar (the short toolbar just
above the Home Tab at the top of the screen.

Click the drop-down menu on the Quick Access Toolbar,
and select More Commands...

Now, you’ll have the Options dialog open on the screen. On
the left panel, you’ll see the drop-down menu says Popular
Commands. Click the drop-down menu and choose Macros,
to see the available macros to add to the menu.

Select the macro you’ve created (InsertNameAndDate), and click
the [Add>>] button to push the macro to the right panel.

Using Macros

9

www.knacktraining.com

Using Macros

Tweak the button for this by selecting InsertNameAndDate, and choosing the
[Modify...] button at the bottom of the screen. This will give you more available
icons to choose from. Also, rewrite the title of the macro to be more user-friendly
(as you can see, I’ve added spaces, and turned the word And lowercase).

Finally, let’s use this work. Click [OK] to exit the Modify Button dialog, and [OK]
to exit the Options dialog.

Select a new, blank sheet, and click the new button on your Quick Access Toolbar.
The content should be inserted.

Creating a Form Control Button
To create a button on the page, click Developer Tab > Controls Group > Insert
Drop-Down Menu > Form Controls Group > Button. This will give you a
crosshairs cursor.

With the crosshairs cursor, click-and-hold the top-left corner of the button you
want to create, then drag to the bottom-right corner of the button, then release.

You’re asked at this point what macro you’d like to associate with this button.
Select our macro, InsertNameAndDate.

Now, customize the button’s appearance by selecting the text within it and changing the text, or by right-
clicking the button and choosing Format Control.

10

www.knacktraining.com

Relative vs. Absolute

Defaulting to Absolute References
An absolute reference is one in which referring to A1 always points to A1. This seems completely intuitive, but
many times in Excel, the way you specify location is by the distance and direction from the referencing cell. By
default, all macros in Excel use absolute references.

Absolute Reference Example
In the example we just finished, clicking into cell A1 created a reference which told Excel, every time the
macro is executed, return to A1. This means that the user of the macro could have their selection in cell A1, or
C19, or ZZ23. Each execution of the macro returns to A1.

Relative Reference Example
Let’s say that I want a macro to highlight three cells in a row - if the user is in cell A14, and the macro is
executed, cells A14, B14, and C14 should be turned red. The reality of this macro is that the actual cell doesn’t
matter. In this scenario, if the user was selected in cell A97, you’d want A97, B97, and C97 all turned red.

Choosing Relative References
At any point, you can click Developer Tab > Code Group > Use Relative References, and the macro will
concern itself with locations relative to the selected cell.

11

www.knacktraining.com

Editing macros

Dig Into the Code
To see the code that was recorded for your macro, click
Developer Tab > Code Group > Macros. On the Macro dialog
box, select our macro InsertNameAndDate, and click [Edit].

On the new window that opens, you’ll see that you’re editing
Microsoft Visual Basic for Applications, for the open workbook
(Book1).

You’ll also see that your code has been inserted (on the top-left
panel) into a Module called Module 1.

Finally, you’ll see an open coding window, where your sub called
InsertNameAndDate is entered, including the comments in
green that you added when we began recording.

This is our macro.

12

www.knacktraining.com

editing macros

The part of the code we’re interested in editing is the indented section - ActiveCell, Range, Select, and all
the rest of it. This section includes the commands we want to tweak, so let’s take a look at the plain-English
version of what we’ve done:

ActiveCell.FormulaR1C1 = “Name:”

In this line, we state that we want to affect the ActiveCell - aka, the cell you have selected. This was cell A1 in
our example. The effect we want to have is to change the FormulaR1C1. This means that we’re changing the
contents of that cell (its formula). As you can see, we enter the text Name:, which is surrounded by quotation
marks.

Note: In Visual Basic, quotation marks around text means that the text is entered as text. Without this,
Excel assumes everything you type is code to be executed.

This line of code is known as affecting a property - you are changing the value entered into the cell, one of its
properties.

The next line is:

Range(“B1”).Select

As you can see, there is a Range object in Visual Basic that needs to be set - by telling it that the text B1 is its
value, you can move on to perform an action.

This line of code is known as a method - you are performing an action that is already made available in Visual
Basic. Whereas properties are the attributes of an object (the value saved into the active cell above), methods
are the verbs that can be executed (you can select something).

13

www.knacktraining.com

editing macros

Modify Something
Let’s perform two quick operations here. First, find the line that has your name in it. Mine says:

ActiveCell.FormulaR1C1 = “Neil Malek”

Simply replace the text inside the quotation marks to a different person.

ActiveCell.FormulaR1C1 = “Steven Rogers”

Next, change where the date information is entered. The line

Range(“A2”).Select

will be changed to

Range(“C1”).Select

and the line

Range(“B2”).Select

Will be changed to

Range(“D1”).Select

The finished result is:

ActiveCell.FormulaR1C1 = “Name:”
Range(“B1”).Select
ActiveCell.FormulaR1C1 = “Steven Rogers”
Range(“C1”).Select
ActiveCell.FormulaR1C1 = “Date:”
Range(“D1”).Select
ActiveCell.FormulaR1C1 = “=TODAY()”

Return to your spreadsheet, find a new, blank worksheet, and execute the newly-changed code. You’ll see the
new name, and the date will be to the right of the name information, instead of below it.

14

www.knacktraining.com

Building a new Macro

Start a New, Blank Macro
Let’s say you wanted to try to create the same macro
without using the Record Macro button. To start, you’d
need the Visual Basic window open.

Click Developer Tab > Code Group > Visual Basic button.
The Visual Basic window will open.

Now, you’ll need a container for your code. These
containers are called Modules. To create a new, blank
module, click Insert Menu > Module. (not Class Module)

A new, blank page will open in the middle of your screen.
This is where you’ll be typing.

Click in the main body of the window, and type

Sub AddDisclaimer()

Press [Enter], and this will be added below:

End Sub

Notice that Sub and End are both blue. This means that these terms are keywords - they are default words
used in Visual Basic code, and shouldn’t be used by a programmer for other purposes. Your macro’s name -
AddDisclaimer - is black, meaning it is something you made up, and unrelated to any system terms.

Note: Every sub that is created must have an end in order to segment it off from other subroutines.

All code that is to be executed in this macro must be typed between the first line and the last. Use the [Enter]
key a few times to give yourself some space.

15

www.knacktraining.com

Objects

Items to be Worked Upon
Think of everything you want to do - select cells, or create new worksheets, or filter data. Each of these actions
has an object - the thing that will be worked upon. In the world of programming, we must either know the
objects that are given to us, or create our own. Luckily, when we’re creating macros, it’s almost always using
objects you are given.

The most common objects we’ll use in our code include:

Application:	 Excel itself.

Workbook:	 A spreadsheet that is created in Excel.

Worksheet:	 A single sheet within a workbook.

Range:	 A contiguous set of cells.

Additionally, we’ll regularly refer to a specific entry - these are the properties:

ActiveWorkbook:	 The open workbook in Excel.

ActiveSheet:	 The sheet that is currently being worked upon.

Selection:	 The cells that are currently selected.

16

www.knacktraining.com

Properties

Affecting Properties in Your Code
There are two common uses for objects in code; you either access the properties of that object, or you access
its methods. When you work with the properties, you can get information from the property (e.g. use the
value that was typed into a cell), or change the property (e.g. change the cell color).

Let’s look at a few examples:

Range(“C5”).Font.Name = “Cambria”
Range(“C5”).Font.Size = 24
Range(“C5”).Font.Bold = True

In this example, notice the following:

Range(“C5”) is used repeatedly. This is our object, and the thing that we need to use to get our work done.
We could have selected a larger range, but we’re only changing a single cell here.

The Font object is used repeatedly. Now that we have gotten to the cell that’s important to us, that cell has
an entire object called Font with many properties.

Every property is set with an equal sign (=). When you are changing the property, you set it equal to
something - in this case, the font, size, and bolding.

Cambria is in quotation marks - nothing else is. This is an interesting point. The Size property is set to
a number, and the Bold property is set to a boolean. These are data types - the types of values that are
permitted for a given property. Boolean is the term for true/false values. Our entry of Cambria is the only one
that is purely done in text format.

Here’s another:

ActiveSheet.Name = “Weekly Stats”
Range(“A1”).Value = “Sales Statistics Week of:”
Range(“A4”).Value = “Region”
Range(“B4”).Value = “Total Sales”
Range(“A5”).Interior.Color = RGB(255, 0, 0)

Here, we’re using the ActiveSheet object - the sheet we have open - to reference the name on the tab at the
bottom of the screen. By changing the property, you can get a new name.

Additionally, we’re accessing the Value property of multiple Range objects to type in standard information.

Finally, the Range object includes an object called its Interior. There are many Interior properties, but we’ll
change the Color to affect the background color. As you can see, we’ve set it to red - RGB(255, 0, 0).

17

www.knacktraining.com

Methods

Executing Existing Methods
All of the objects in the Excel world have methods associated that can be executed. On the previous page, we
used a property by typing this structure:

ObjectName.PropertyName = Value

With methods, we use the same dot notation (the object we’re referencing, followed by a period, followed by
part of that object), but we are simply executing the method, instead of setting a value. This means that after
the dot, we simply use the method.

Range(“A1”).Select
Range(“C4:C1045”).ClearContents
Worksheets.Add

You’ll notice that each of these ‘verbs’ is simply named, and their command is executed.

Understanding Macro Writing
Now that we’ve seen all the pieces, we can build a full macro without recording. Open the Visual Basic
window, and create a new Module. Type the following content, and close the window. Choose your favorite
execution method to run the macro to test.

18

www.knacktraining.com

Variables

The Concept of Variables
A variable is a container for information. If you need your code to remember something, like the row you’re
working on, or the name of the user, you’ll need to create a variable to remember that information. To name a
variable, follow these rules:

•	 Name must be less than 255 characters

•	 No spaces

•	 Must begin with a letter

•	 No periods

Create a Variable
To create a variable, invent a simple, understandable name, and determine what type of data that variable will
use. This could be a number data type like an integer (whole number) or double (decimal number), a string
(text), or a boolean (true/false). Then, you declare the variable:

Dim password As String
Dim totalSales As Integer

Don’t worry about the term ‘Dim’ - it used to be short for the word dimension, but programming has evolved
to the point where it just means variable.

As you can see in the above code, you state that you have a new variable (Dim) with a name (password or
totalSales), that is set to a data type (String or Integer). Now you can use these variables like this:

19

www.knacktraining.com

Variables

Data Types
As you saw on the previous page, we set the variable totalSales to a data type called Double, and the line of
code

totalSales = Application.InputBox(“Total sales this week:”,
Type:=1)

...includes a section that says Type:=1. The InputBox method we’ve called for the Application object takes in
a textbox of information. If, as in the previous line, we don’t put anything after the prompt, the data type of
this information is text, or a String. By typing the added element Type:=1, we inform the InputBox to accept a
number. We must, then, also match this data type with our variable - Dim totalSales As Double.

It is important for any programming language to successfully handle these data types, because trying to
multiply by a word, or handle T, true, TRUE, and YES as a true statement are much too complicated. As
programmers, we must know the data type that is relevant for the situation, and stay consistent.

Common Data Type List
Integer:	 whole numbers between -32,768 and 32,767

Long:	 whole numbers between -2,147,483,648 and 2,147,486,647

Single:	 decimal numbers taking 4 bytes of memory

Double:	 decimal numbers taking 8 bytes of memory

Date:	 8 bytes of date information (until the year 9999)

String:	 Text information

Boolean:	 True / False information

20

www.knacktraining.com

Using IF-Then-Else

Decision Trees
One of the most essential reasons for writing our macros instead of recording them is the ability to build
decision trees into our code through the use of If, Then, and Else. Before we can use these tools, we must
understand both conditional operators and logical operators

Conditional Operators
A conditional operator is the key to using an If statement. If asks whether a test executes as true or false. The
conditional operator is the greater than, less than, or other test.

List of Conditional Operators
=	 Equal to (valid for text or number values)

>	 Greater than

<	 Less than

>=	 Greater than or equal to

<=	 Less than or equal to

<>	 Not equal to

Logical Operators
Many times, a single conditional test will not be adequate for what we’re attempting to do. A logical operator
strings multiple conditional operators together.

List of Conditional Operators
And	 Both conditions must be true

Or	 One or both conditions must be true

Xor	 One condition must be true, but not both

Not	 Negates true statement

21

www.knacktraining.com

Using IF-Then-Else

Creating an If Statement
First, we gather any necessary information to make our judgment on the conditions. Then, we place the
conditions into an If statement, and test whether they are true. Here’s an example:

Notice in this example: there is both an If and an ElseIf - If is only used for the first check, and every other
check in the same If block is done with an ElseIf statement. Also notice that, just as there is End Sub at the
end of the macro, there is End If at the end of the block. This must be in place to finish the test properly.

22

www.knacktraining.com

Using a Loop

Programming Loops
A programming loop is a section of your program that can be repeated until some condition is met. They are
used very frequently to perform the same section of code on multiple rows of content - you perform the
section of code once, then go to the next row and loop through the code a second time. This is the other
deciding factor in recording vs. writing macros, as it is impossible to record a loop.

There are two fundamental loop types in programming - For loops and While loops. Let’s look at the
differences and similarities:

For Loops
If you know the number of executions you need, you’ll be using a for loop. The first thing you’ll do is create
a counter, and the for loop will watch the counter to see whether it should execute the loop again. Here’s an
example:

In this example, we’re using variables to determine how many times we have performed the operation and
how many times it was requested. If the user types in 5, the counter will increase until it has been performed
5 times. The rowToFormat variable will keep changing from A1:G1 until A5:G5.

23

www.knacktraining.com

Using a Loop

While Loops
The While loop idea performs a given set of code, but only until it matches a criteria. In the previous example,
we used a counter as our criteria. In the while loop, we often have a condition that is calculated along the way.
Here’s an example:

In this example, we use variables to compare the running sales total against our breakeven value. In the
InputBox, we have the user tell us what our breakeven number is. Then, starting at row 2, we keep adding up
the values in that column until we find our breakeven total.

The loop then stops, and the last line of code is executed - take the current cell and mark it in red.

In a while loop, the code within the loop executes over and over until the condition is met. This compares with
our for loop earlier, which executed over and over until the counter expired. They are very similar tools, and
can often be used interchangeably.

