
Microsoft Excel:
Recording, Using, and Editing Macros

Terminology: VBA, SUBROUTINE, 
Objects, Methods, and Properties

Macro Fundamentals: Record 
and Use

Writing a Macro: Objects, 
Methods, and Properties

Advanced Ideas: Variables, 
Loops, and Decisions

02

03

14

18

neil@knacktraining.com	 http://youtube.com/neilmalek

http://facebook.com/knacktraining	 http://instagram.com/neilmalek

http://twitter.com/neilmalek		 http://linkedin.com/in/neilmalek



2

www.knacktraining.com

Terminology

VBA:	 The	implementation	of	Microsoft’s	programming language	that	is	used	in	
Word,	Excel,	and	the	rest	of	the	Office	Suite.	The	language	is	called	Visual 
Basic,	and	the	full	acronym	is	Visual Basic for Applications.

Subroutine:	 Listed	as	a	sub	in	the	language,	a	subroutine	is	a	chunk	of	code	
that	can	be	executed.	This	is	the	container	for	your	macro.

Module:	 The	code	container	for	subroutines.	When	looking	at	the	VBA	
window,	it	is	the	page	that	opens	to	be	typed	into.

Keywords:	 The	words	that	are	protected	in	the	Visual	Basic	language.	These	
terms	are	used	by	the	language	to	accomplish	standard	tasks,	
and	should	not	be	used	for	user-created	elements.

Comments:	 The	plain-English	portions	of	your	macro.	Since	you’ll	be	revisiting	your	
macro	after	long	periods	away,	you	should	create	comments	to	read	what	
you	were	thinking	when	you	originally	created	the	macro.

Objects:	 In	a	programming	language,	in	order	to	affect	a	real	element	(like	a	
workbook,	worksheet,	or	cell),	that	language	must	have	an	entry	that	
reflects	that	element.	An	object	in	a	programming	language	is	effectively	
the noun.

Properties:	 In	the	language,	these	objects	have	attributes	(the	color	of	a	cell,	for	
example),	which	are	called	properties.	If	the	object	is	the	noun,	the	property 
is	the	adjective.

Methods:	 In	the	language,	these	objects	have	actions	they	can	take	(copy,	for	
example),	which	are	called	methods.	If	the	object	is	the	noun,	the	method	is	
the verb.

Comment
Subroutine

Method
PropertyObject



3

www.knacktraining.com

Understanding Macros

Programming for the Layperson
The	entirety	of	the	OFfice	suite	-	Word,	Excel,	etc.	-	was	written	in	the	programming	language	Visual Basic.	As	
described	on	the	previous	page,	the	various	tools	that	are	given	to	us	as	users	are	composed	of	objects,	and	
code	that	accesses	those	objects’	methods	and	properties.	For	example,	if	you	select	cell	C3	and	press	the	
button	to	make	the	contents	bold,	the	command	Excel	executes	would	look	like	this:

Range(“C3”).Select 
Selection.Font.Bold

A	macro,	then,	is	a	set	of	these	commands	that	we	piece	together	for	our	own	use.	The	commands	can	be	
as	straightforward	as	the	above	example	(where	a	single	command	is	executed	on	a	single	cell),	or	they	can	
become	vastly	more	complicated	(where	the	macro	decides whether	to	implement	a	series	of	commands	on	
various	cells	based on conditions you set).	

In	this	document,	we	will	be	recording	a	new	macro	by	telling	Excel	to	watch	our	sequence	of	button	presses	
and	typing.	Afterward,	we’ll	be	exploring	the	code	that	this	recording	creates	for	us,	and	modifying	it.	Finally,	
we’ll	discuss	how	to	write	a	macro	without	any	recording	involved.

Recording vs. Writing Macros
Remember	that	Excel	is	not	an	intelligent	program;	if	it	records	the	steps	you	perform,	it	has	no	way	of	
understanding	why	you	performed	those	steps,	in	that	order,	on	those	cells.	For	example,	if	you	record a 
macro	that	has	you	clicking	in	cell	C3,	later	the	macro	will	click	into	cell	C3.	This	happens	even	if	you	selected	
C3	because	it	was	the	first	cell	with	data,	and	now	the	first	cell	with	data	is	C4.

When	we	write	our	own	macro,	the	coding	language	can	include	decisions	and	tests	-	things	like	look for the 
last cell with data or continue until you reach a cell greater than 50,000.	Recorded	macros	cannot	include	
these	tests.



4

www.knacktraining.com

Record a Macro

Preparation
This	cannot	be	stressed	enough	-	the	most	important	step	for	recording	a	macro	is	the	preparation	stage.	
Once	you	press	the	button	to	begin	recording,	Excel	is	watching	and	recording	every	click	and	entry.	Begin	by	
determining	what	should	be	included	in	your	macro	(navigation,	selection,	and	other	commands),	and	what	
shouldn’t.	Also,	consider	that	you’ll	want	to	understand	your	macro	later	-	moving	back-and-forth	from	one	
area	to	another	will	mean	that	the	recorded	steps	are	difficult	to	follow.	Organize	your	thoughts	on	paper,	
then	start	the	recording	process.

The Developer Tab
In	order	to	record	and	edit	macros,	you’ll	need	an	additional	tab	available	at	the	top	of	the	screen	-	Developer. 
If	you	don’t	see	it	yet,	click	File > Options > Customize Ribbon.	Select	the	checkbox	for	Developer.



5

www.knacktraining.com

Now	your	Ribbon	should	look	like	this:

Press Record
On	the	Developer Tab,	in	the	Code Group,	select	Record Macro.	A	
new	dialog	box	will	appear.	Into	this	dialog	box:

Name the	macro.	It	should	be	self-explanatory,	and	it	cannot	have	
spaces	in	it.	I	like	to	use	camel case	(every	first	letter	of	a	new	word	
is	capitalized).	I’ll	name	mine	InsertNameAndDate.

A	Shortcut key	is	not	essential	(you	can	use	your	
macro	without	a	keyboard	shortcut),	and	it’s	essential	
to	remember	that	whatever	shortcut	you	choose	will	
replace	the	existing	shortcut	tool.	In	this	example,	
understand	that	Ctrl + i	is	the	shortcut	for	italics,	
and	you	wouldn’t	be	able	to	use	that	shortcut	in	this	
spreadsheet	for	italicizing.

The	choices	for	Store macro in are This Workbook 
(available	only	on	this	file),	New Workbook	(saved	into	
the	template	for	blank	spreadsheets),	and	Personal 
Macro Workbook	(a	universal	source	for	all	files	you	
open	on	your	computer).	For	our	purposes,	I’ll	choose	
This Workbook.

Finally,	add	any	useful	Description	in	plain	English,	so	
future	users	of	the	macro	(and	you)	can	understand	the	
point	of	this	code.

Click OK.	The	recording	process	will	begin.

You’ll	know	that	you’re	actively	recording,	because	the	button	
that	used	to	say	Record Macro	is	now	a	blue	square	that	says	Stop 
Recording.

Record a Macro



6

www.knacktraining.com

Record a Macro

Perform Your Steps
For	the	purposes	of	this	macro,	we’ll	focus	on	absolute reference	steps,	which	means	that	if	you	click	cell	A1,	
the	macro	will	always	go	to	A1.	More	on	the	other	option	soon.

Click in cell A1.	Type	Name: 

Click in cell B1.	Type	<your name>

Click in cell A2.	Type	Date:

Click in cell B2.	Type	=TODAY()

Press	[Enter].

At	this	point,	we’ve	done	all	we’re	going	to	record.

Click Developer > Code Group > Stop Recording.

Inspect Your Recording
To	see	the	macro	you’ve	created,	click	Developer > Macros.	This	
will	open	the	Macro dialog	box.	Any	macros	you	have	available	
will	be	listed	on	this	dialog.



7

www.knacktraining.com

Using Macros

Use Your Recording
We’ll	use	this	macro	four	times,	through	the	four	execution	methods	you	might	find	useful.	To	do	this,	let’s	
create	four	new,	blank	sheets.	Click	the	[+]	button	in	the	tabbed	section	at	the	bottom	of	the	screen	four	
times,	to	create	these	sheets.

Click Sheet2.

Run Macro
Click Developer Tab > Code Group > Macros.	From	the	Macro	dialog	box,	select	your	macro	
(InsertNameAndDate),	and	choose	[Run].

What	will	happen	is	that	the	content	described	in	our	previous	exercise	is	inserted.	Try	to	Undo	the	operation,	
and	you’ll	notice	that	macros can’t be undone.

Keyboard Shortcut
In	the	previous	exercise,	we	set	Ctrl + i	as	the	keyboard	shortcut	for	this	macro.	Select	a	new,	blank	worksheet,	
and	use	the	shortcut	you	created.	Again,	this	can’t be undone.



8

www.knacktraining.com

Quick Access Toolbar
So	far,	we’ve	used	a	multiple-button-press	procedure,	and	
a	keyboard	shortcut	that	needs	to	be	remembered	to	be	
leveraged.	One	of	my	preferred	methods	is	to	add	a	custom	
button	to	the	Quick Access Toolbar	(the	short	toolbar	just	
above	the	Home Tab	at	the	top	of	the	screen.

Click the drop-down menu on the Quick Access Toolbar,	
and	select	More Commands...

Now,	you’ll	have	the	Options dialog	open	on	the	screen.	On	
the	left	panel,	you’ll	see	the	drop-down	menu	says	Popular 
Commands.	Click	the	drop-down	menu	and	choose	Macros,	
to	see	the	available	macros	to	add	to	the	menu.

Select	the	macro	you’ve	created	(InsertNameAndDate),	and	click	
the [Add>>]	button	to	push	the	macro	to	the	right	panel.

Using Macros



9

www.knacktraining.com

Using Macros

Tweak	the	button	for	this	by	selecting	InsertNameAndDate,	and	choosing	the	
[Modify...]	button	at	the	bottom	of	the	screen.	This	will	give	you	more	available	
icons	to	choose	from.	Also,	rewrite	the	title	of	the	macro	to	be	more	user-friendly	
(as	you	can	see,	I’ve	added	spaces,	and	turned	the	word	And	lowercase).

Finally,	let’s	use	this	work.	Click	[OK]	to	exit	the	Modify Button	dialog,	and	[OK] 
to	exit	the	Options dialog.

Select	a	new,	blank	sheet,	and	click	the	new	button	on	your	Quick	Access	Toolbar.	
The	content	should	be	inserted.

Creating a Form Control Button
To	create	a	button	on the page,	click	Developer Tab > Controls Group > Insert 
Drop-Down Menu > Form Controls Group > Button.	This	will	give	you	a	
crosshairs	cursor.

With	the	crosshairs	cursor,	click-and-hold	the	top-left	corner	of	the	button	you	
want	to	create,	then	drag	to	the	bottom-right	corner	of	the	button,	then	release. 

You’re	asked	at	this	point	what	macro	you’d	like	to	associate	with	this	button.	
Select	our	macro,		InsertNameAndDate.

Now,	customize	the	button’s	appearance	by	selecting	the	text	within	it	and	changing	the	text,	or	by	right-
clicking	the	button	and	choosing	Format Control.



10

www.knacktraining.com

Relative vs. Absolute

Defaulting to Absolute References
An	absolute reference	is	one	in	which	referring	to	A1 always points	to	A1.	This	seems	completely	intuitive,	but	
many	times	in	Excel,	the	way	you	specify	location	is	by	the	distance and direction	from	the	referencing	cell.	By	
default,	all	macros	in	Excel	use	absolute references.

Absolute Reference Example
In	the	example	we	just	finished,	clicking	into	cell	A1	created	a	reference	which	told	Excel,	every	time	the	
macro	is	executed,	return	to	A1.	This	means	that	the	user	of	the	macro	could	have	their	selection	in	cell	A1,	or	
C19,	or	ZZ23.	Each	execution	of	the	macro	returns	to	A1.

Relative Reference Example
Let’s	say	that	I	want	a	macro	to	highlight	three	cells	in	a	row	-	if	the	user	is	in	cell	A14,	and	the	macro	is	
executed,	cells	A14,	B14,	and	C14	should	be	turned	red.	The	reality	of	this	macro	is	that	the actual cell doesn’t 
matter.	In	this	scenario,	if	the	user	was	selected	in	cell	A97,	you’d	want	A97,	B97,	and	C97	all	turned	red.

Choosing Relative References
At	any	point,	you	can	click	Developer Tab > Code Group > Use Relative References,	and	the	macro	will	
concern	itself	with	locations	relative to the selected cell.



11

www.knacktraining.com

Editing macros

Dig Into the Code
To	see	the	code	that	was	recorded	for	your	macro,	click	
Developer Tab > Code Group > Macros.	On	the	Macro	dialog	
box,	select	our	macro	InsertNameAndDate,	and	click	[Edit].

On	the	new	window	that	opens,	you’ll	see	that	you’re	editing	
Microsoft Visual Basic for Applications,	for	the	open	workbook	
(Book1).

You’ll	also	see	that	your	code	has	been	inserted	(on	the	top-left	
panel)	into	a	Module	called	Module 1. 

Finally,	you’ll	see	an	open	coding	window,	where	your	sub	called	
InsertNameAndDate	is	entered,	including	the	comments in 
green	that	you	added	when	we	began	recording.	

This	is	our	macro.



12

www.knacktraining.com

editing macros

The	part	of	the	code	we’re	interested	in	editing	is	the	indented	section	-	ActiveCell,	Range,	Select,	and	all	
the	rest	of	it.	This	section	includes	the	commands	we	want	to	tweak,	so	let’s	take	a	look	at	the	plain-English	
version	of	what	we’ve	done:

ActiveCell.FormulaR1C1 = “Name:”

In	this	line,	we	state	that	we	want	to	affect	the	ActiveCell	-	aka,	the	cell	you	have	selected.	This	was	cell	A1	in	
our	example.	The	effect	we	want	to	have	is	to	change	the	FormulaR1C1.	This	means	that	we’re	changing	the	
contents	of	that	cell	(its	formula).	As	you	can	see,	we	enter	the	text	Name:,	which	is	surrounded	by	quotation	
marks.

Note: In Visual Basic, quotation marks around text means that the text is entered as text. Without this, 
Excel assumes everything you type is code to be executed.

This	line	of	code	is	known	as	affecting	a	property -	you	are	changing	the	value	entered	into	the	cell,	one	of	its	
properties.

The	next	line	is:

Range(“B1”).Select

As	you	can	see,	there	is	a	Range	object	in	Visual	Basic	that	needs	to	be	set	-	by	telling	it	that	the	text	B1	is	its	
value,	you	can	move	on	to	perform	an	action.

This	line	of	code	is	known	as	a	method	-	you	are	performing	an	action	that	is	already	made	available	in	Visual	
Basic.	Whereas	properties	are	the	attributes	of	an	object	(the	value	saved	into	the	active	cell	above),	methods	
are	the	verbs	that	can	be	executed	(you	can	select	something).



13

www.knacktraining.com

editing macros

Modify Something
Let’s	perform	two	quick	operations	here.	First,	find	the	line	that	has	your	name	in	it.	Mine	says:

ActiveCell.FormulaR1C1 = “Neil Malek”

Simply	replace	the	text	inside	the	quotation	marks	to	a	different	person.

ActiveCell.FormulaR1C1 = “Steven Rogers”

Next,	change	where	the	date	information	is	entered.	The	line	

Range(“A2”).Select

will	be	changed	to	

Range(“C1”).Select

and	the	line	

Range(“B2”).Select

Will	be	changed	to	

Range(“D1”).Select

The	finished	result	is:

ActiveCell.FormulaR1C1 = “Name:” 
Range(“B1”).Select 
ActiveCell.FormulaR1C1 = “Steven Rogers” 
Range(“C1”).Select 
ActiveCell.FormulaR1C1 = “Date:” 
Range(“D1”).Select 
ActiveCell.FormulaR1C1 = “=TODAY()”

Return	to	your	spreadsheet,	find	a	new,	blank	worksheet,	and	execute	the	newly-changed	code.	You’ll	see	the	
new	name,	and	the	date	will	be	to	the	right	of	the	name	information,	instead	of	below it.



14

www.knacktraining.com

Building a new Macro

Start a New, Blank Macro
Let’s	say	you	wanted	to	try	to	create	the	same	macro	
without	using	the	Record Macro	button.	To	start,	you’d	
need	the	Visual Basic window open.

Click Developer Tab > Code Group > Visual Basic	button.	
The	Visual	Basic	window	will	open.

Now,	you’ll	need	a	container	for	your	code.	These	
containers	are	called	Modules.	To	create	a	new,	blank	
module,	click	Insert Menu > Module.	(not	Class Module)

A	new,	blank	page	will	open	in	the	middle	of	your	screen.	
This	is	where	you’ll	be	typing.

Click	in	the	main	body	of	the	window,	and	type	

Sub AddDisclaimer()

Press	[Enter],	and	this	will	be	added	below:

End Sub

Notice	that	Sub	and	End	are	both	blue.	This	means	that	these	terms	are	keywords	-	they	are	default	words	
used	in	Visual	Basic	code,	and	shouldn’t	be	used	by	a	programmer	for	other	purposes.	Your	macro’s	name	-	
AddDisclaimer	-	is	black,	meaning	it	is	something	you	made	up,	and	unrelated	to	any	system	terms.

Note: Every sub that is created must have an end in order to segment it off from other subroutines.

All	code	that	is	to	be	executed	in	this	macro	must	be	typed	between	the	first	line	and	the	last.	Use	the	[Enter] 
key	a	few	times	to	give	yourself	some	space.



15

www.knacktraining.com

Objects

Items to be Worked Upon
Think	of	everything	you	want	to	do	-	select cells,	or	create new worksheets,	or	filter data.	Each	of	these	actions	
has	an	object	-	the	thing	that	will	be	worked	upon.	In	the	world	of	programming,	we	must	either	know	the	
objects	that	are	given	to	us,	or	create	our	own.	Luckily,	when	we’re	creating	macros,	it’s	almost	always	using	
objects	you	are	given.

The	most	common	objects	we’ll	use	in	our	code	include:

Application: Excel	itself.

Workbook: A	spreadsheet	that	is	created	in	Excel.

Worksheet: A	single	sheet	within	a	workbook.

Range: A	contiguous	set	of	cells.

Additionally,	we’ll	regularly	refer	to	a	specific	entry	-	these	are	the	properties:

ActiveWorkbook: The	open	workbook	in	Excel.

ActiveSheet: The	sheet	that	is	currently	being	worked	upon.

Selection: The	cells	that	are	currently	selected.



16

www.knacktraining.com

Properties

Affecting Properties in Your Code
There	are	two	common	uses	for	objects	in	code;	you	either	access	the	properties	of	that	object,	or	you	access	
its	methods.	When	you	work	with	the	properties,	you	can	get	information	from	the	property	(e.g.	use	the	
value	that	was	typed	into	a	cell),	or	change	the	property	(e.g.	change	the	cell color).

Let’s	look	at	a	few	examples:

Range(“C5”).Font.Name = “Cambria” 
Range(“C5”).Font.Size = 24 
Range(“C5”).Font.Bold = True

In	this	example,	notice	the	following:

Range(“C5”) is used repeatedly.	This	is	our	object,	and	the	thing	that	we	need	to	use	to	get	our	work	done.	
We	could	have	selected	a	larger	range,	but	we’re	only	changing	a	single	cell	here.

The Font object is used repeatedly.	Now	that	we	have	gotten	to	the	cell	that’s	important	to	us,	that	cell	has	
an	entire	object	called	Font	with	many	properties.

Every property is set with an equal sign (=).	When	you	are	changing	the	property,	you	set	it	equal	to	
something	-	in	this	case,	the	font,	size,	and	bolding.

Cambria is in quotation marks - nothing else is.	This	is	an	interesting	point.	The	Size	property	is	set	to	
a number,	and	the	Bold	property	is	set	to	a	boolean.	These	are	data types	-	the	types	of	values	that	are	
permitted	for	a	given	property.	Boolean	is	the	term	for	true/false	values.	Our	entry	of	Cambria	is	the	only	one	
that	is	purely	done	in	text format.

Here’s	another:

ActiveSheet.Name = “Weekly Stats” 
Range(“A1”).Value = “Sales Statistics Week of:” 
Range(“A4”).Value = “Region” 
Range(“B4”).Value = “Total Sales” 
Range(“A5”).Interior.Color = RGB(255, 0, 0)

Here,	we’re	using	the	ActiveSheet object	-	the	sheet	we	have	open	-	to	reference	the	name	on	the	tab	at	the	
bottom	of	the	screen.	By	changing	the	property,	you	can	get	a	new	name.

Additionally,	we’re	accessing	the	Value	property	of	multiple	Range objects	to	type	in	standard	information.

Finally,	the	Range object	includes	an	object	called	its	Interior.	There	are	many	Interior	properties,	but	we’ll	
change the Color	to	affect	the	background	color.	As	you	can	see,	we’ve	set	it	to	red	-	RGB(255, 0, 0).



17

www.knacktraining.com

Methods

Executing Existing Methods
All	of	the	objects	in	the	Excel	world	have	methods	associated	that	can	be	executed.	On	the	previous	page,	we	
used	a	property	by	typing	this	structure:

ObjectName.PropertyName = Value

With	methods,	we	use	the	same	dot notation	(the	object	we’re	referencing,	followed	by	a	period,	followed	by	
part	of	that	object),	but	we	are	simply	executing	the	method,	instead	of	setting	a	value.	This	means	that	after	
the	dot,	we	simply	use	the	method.

Range(“A1”).Select 
Range(“C4:C1045”).ClearContents 
Worksheets.Add

You’ll	notice	that	each	of	these	‘verbs’	is	simply	named,	and	their	command	is	executed.

Understanding Macro Writing
Now	that	we’ve	seen	all	the	pieces,	we	can	build	a	full	macro	without	recording.	Open	the	Visual	Basic	
window,	and	create	a	new	Module.	Type	the	following	content,	and	close	the	window.	Choose	your	favorite	
execution	method	to	run	the	macro	to	test.



18

www.knacktraining.com

Variables

The Concept of Variables
A	variable	is	a	container	for	information.	If	you	need	your	code	to	remember	something,	like	the	row	you’re	
working	on,	or	the	name	of	the	user,	you’ll	need	to	create	a	variable	to	remember	that	information.	To	name	a	
variable,	follow	these	rules:

• Name	must	be	less	than	255	characters

• No	spaces

• Must	begin	with	a	letter

• No	periods

Create a Variable
To	create	a	variable,	invent	a	simple,	understandable	name,	and	determine	what	type	of	data	that	variable	will	
use.	This	could	be	a	number	data	type	like	an	integer	(whole	number)	or	double	(decimal	number),	a	string 
(text),	or	a	boolean	(true/false).	Then,	you	declare	the	variable:

Dim password As String 
Dim totalSales As Integer

Don’t	worry	about	the	term	‘Dim’	-	it	used	to	be	short	for	the	word	dimension,	but	programming	has	evolved	
to	the	point	where	it	just	means	variable.

As	you	can	see	in	the	above	code,	you	state	that	you	have	a	new	variable	(Dim)	with	a	name	(password or 
totalSales),	that	is	set	to	a	data	type	(String or Integer).	Now	you	can	use	these	variables	like	this:



19

www.knacktraining.com

Variables

Data Types
As	you	saw	on	the	previous	page,	we	set	the	variable	totalSales to a data type	called	Double,	and	the	line	of	
code

totalSales = Application.InputBox(“Total sales this week:”, 
Type:=1)

...includes	a	section	that	says	Type:=1.	The	InputBox	method	we’ve	called	for	the	Application	object	takes	in	
a	textbox	of	information.	If,	as	in	the	previous	line,	we	don’t	put	anything	after	the	prompt,	the	data type	of	
this	information	is	text,	or	a	String.	By	typing	the	added	element	Type:=1,	we	inform	the	InputBox	to	accept	a	
number.	We	must,	then,	also	match	this	data	type	with	our	variable	-	Dim totalSales As Double.

It	is	important	for	any	programming	language	to	successfully	handle	these	data	types,	because	trying	to	
multiply	by	a	word,	or	handle	T,	true,	TRUE,	and	YES	as	a	true	statement	are	much	too	complicated.	As	
programmers,	we	must	know	the	data	type	that	is	relevant	for	the	situation,	and	stay	consistent.

Common Data Type List
Integer: whole numbers	between	-32,768	and	32,767

Long: whole numbers	between	-2,147,483,648	and	2,147,486,647

Single: decimal numbers	taking	4	bytes	of	memory

Double: decimal numbers taking	8	bytes	of	memory

Date:	 8	bytes	of	date	information	(until	the	year	9999)

String:	 Text	information

Boolean: True / False information



20

www.knacktraining.com

Using IF-Then-Else

Decision Trees
One	of	the	most	essential	reasons	for	writing	our	macros	instead	of	recording	them	is	the	ability	to	build	
decision trees	into	our	code	through	the	use	of	If,	Then,	and	Else.	Before	we	can	use	these	tools,	we	must	
understand	both	conditional operators	and	logical operators

Conditional Operators
A	conditional operator	is	the	key	to	using	an	If	statement.	If	asks	whether	a	test	executes	as	true or false. The 
conditional	operator	is	the	greater than,	less than,	or	other	test.

List of Conditional Operators
= Equal	to	(valid	for	text	or	number	values)

> Greater than

<	 Less	than

>=	 Greater	than	or	equal	to

<=	 Less	than	or	equal	to

<>	 Not	equal	to

Logical Operators
Many	times,	a	single	conditional	test	will	not	be	adequate	for	what	we’re	attempting	to	do.	A	logical operator 
strings	multiple	conditional operators together.

List of Conditional Operators
And	 Both	conditions	must	be	true

Or	 One	or	both	conditions	must	be	true

Xor	 One	condition	must	be	true,	but	not	both

Not	 Negates	true	statement



21

www.knacktraining.com

Using IF-Then-Else

Creating an If Statement
First,	we	gather	any	necessary	information	to	make	our	judgment	on	the	conditions.	Then,	we	place	the	
conditions	into	an	If	statement,	and	test	whether	they	are	true.	Here’s	an	example:

Notice	in	this	example:	there	is	both	an	If	and	an	ElseIf	-	If	is	only	used	for	the	first	check,	and	every	other	
check	in	the	same	If block	is	done	with	an	ElseIf	statement.	Also	notice	that,	just	as	there	is	End Sub at the 
end	of	the	macro,	there	is	End If	at	the	end	of	the	block.	This	must be in	place	to	finish	the	test	properly.



22

www.knacktraining.com

Using a Loop

Programming Loops
A	programming	loop	is	a	section	of	your	program	that	can	be	repeated	until	some	condition	is	met.	They	are	
used	very	frequently	to	perform	the	same	section	of	code	on	multiple	rows	of	content	-	you	perform	the	
section	of	code	once,	then	go	to	the	next	row	and	loop	through	the	code	a	second	time.	This	is	the	other	
deciding	factor	in	recording	vs.	writing	macros,	as	it	is	impossible	to	record	a	loop.

There	are	two	fundamental	loop	types	in	programming	-	For loops	and	While loops.	Let’s	look	at	the	
differences	and	similarities:

For Loops
If	you	know the number of executions you need,	you’ll	be	using	a	for loop.	The	first	thing	you’ll	do	is	create	
a counter,	and	the	for	loop	will	watch	the	counter	to	see	whether	it	should	execute	the	loop	again.	Here’s	an	
example:

In	this	example,	we’re	using	variables	to	determine	how many times we have performed the operation	and	
how many times it was requested.	If	the	user	types	in	5,	the	counter	will	increase	until	it	has	been	performed	
5	times.	The	rowToFormat	variable	will	keep	changing	from	A1:G1	until	A5:G5.



23

www.knacktraining.com

Using a Loop

While Loops
The While loop	idea	performs	a	given	set	of	code,	but	only	until it matches a criteria.	In	the	previous	example,	
we	used	a	counter	as	our	criteria.	In	the	while	loop,	we	often	have	a	condition	that	is	calculated	along	the	way.	
Here’s	an	example:

In	this	example,	we	use	variables	to	compare	the	running sales total	against	our	breakeven value. In the 
InputBox,	we	have	the	user	tell	us	what	our	breakeven	number	is.	Then,	starting	at	row	2,	we	keep	adding	up	
the	values	in	that	column	until	we	find	our	breakeven	total.

The	loop	then	stops,	and	the	last	line	of	code	is	executed	-	take	the	current	cell	and	mark	it	in	red.

In a while loop,	the	code	within	the	loop	executes	over	and	over	until the condition is met.	This	compares	with	
our	for loop	earlier,	which	executed	over	and	over	until the counter expired.	They	are	very	similar	tools,	and	
can	often	be	used	interchangeably.


